EXTRA PROBLEMS FOR HOMEWORK 2

1. Determine whether the Fourier series of the following functions converge uniformly or not. Sketch each function.
(a) $f(x)=e^{x},-1<x<1$;
(b) $f(x)=x+|x|,-\pi<x<\pi$;
(c) $f(x)=1+2 x-2 x^{3},-1<x<1$.
2. The Fourier series of the function

$$
f(x)=\frac{\sin x}{x}, \quad-\pi<x<\pi,
$$

converges at every point. To what value does the series converge at $x=0$? at $x=\pi$? The convergence is uniform. Why?
3. Let a_{n} and b_{n} be Fourier coefficients of the function $f(x),-\pi<x<\pi$. If a_{n} and b_{n} tend to zero as n tends to infinity, show that the series

$$
a_{0}+\sum_{n=1}^{\infty} e^{-\alpha n}\left(a_{n} \cos n x+b_{n} \sin n x\right),
$$

where $\alpha>0$, converges uniformly.

